Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.231
Filtrar
1.
Front Biosci (Schol Ed) ; 16(1): 7, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38538347

RESUMO

Disorders of mitochondrial function are responsible for many inherited neuromuscular and metabolic diseases. Their combination of high mortality, multi-systemic involvement, and economic burden cause devastating effects on patients and their families. Molecular diagnostic tools are becoming increasingly important in providing earlier diagnoses and guiding more precise therapeutic treatments for patients suffering from mitochondrial disorders. This review addresses fundamental molecular concepts relating to the pathogenesis of mitochondrial dysfunction and disorders. A series of short cases highlights the various clinical presentations, inheritance patterns, and pathogenic mutations in nuclear and mitochondrial genes that cause mitochondrial diseases. Graphical and tabular representations of the results are presented to guide the understanding of the important concepts related to mitochondrial molecular genetics and pathology. Emerging technology is incorporating preimplantation genetic testing for mtDNA disorders, while mitochondrial replacement shows promise in significantly decreasing the transfer of diseased mitochondrial DNA (mtDNA) to embryos. Medical professionals must maintain an in-depth understanding of the gene mutations and molecular mechanisms underlying mitochondrial disorders. Continued diagnostic advances and comprehensive management of patients with mitochondrial disorders are essential to achieve robust clinical impacts from comprehensive genomic testing. This is especially true when supported by non-genetic tests such as biochemical analysis, histochemical stains, and imaging studies. Such a multi-pronged investigation should improve the management of mitochondrial disorders by providing accurate and timely diagnoses to reduce disease burden and improve the lives of patients and their families.


Assuntos
Doenças Mitocondriais , Humanos , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Doenças Mitocondriais/patologia , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mutação , Genes Mitocondriais
2.
FASEB J ; 38(4): e23478, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38372965

RESUMO

Carnitine derivatives of disease-specific acyl-CoAs are the diagnostic hallmark for long-chain fatty acid ß-oxidation disorders (lcFAOD), including carnitine shuttle deficiencies, very-long-chain acyl-CoA dehydrogenase deficiency (VLCADD), long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) and mitochondrial trifunctional protein deficiency (MPTD). The exact consequence of accumulating lcFAO-intermediates and their influence on cellular lipid homeostasis is, however, still unknown. To investigate the fate and cellular effects of the accumulating lcFAO-intermediates and to explore the presence of disease-specific markers, we used tracer-based lipidomics with deuterium-labeled oleic acid (D9-C18:1) in lcFAOD patient-derived fibroblasts. In line with previous studies, we observed a trend towards neutral lipid accumulation in lcFAOD. In addition, we detected a direct connection between the chain length and patterns of (un)saturation of accumulating acylcarnitines and the various enzyme deficiencies. Our results also identified two disease-specific candidate biomarkers. Lysophosphatidylcholine(14:1) (LPC(14:1)) was specifically increased in severe VLCADD compared to mild VLCADD and control samples. This was confirmed in plasma samples showing an inverse correlation with enzyme activity, which was better than the classic diagnostic marker C14:1-carnitine. The second candidate biomarker was an unknown lipid class, which we identified as S-(3-hydroxyacyl)cysteamines. We hypothesized that these were degradation products of the CoA moiety of accumulating 3-hydroxyacyl-CoAs. S-(3-hydroxyacyl)cysteamines were significantly increased in LCHADD compared to controls and other lcFAOD, including MTPD. Our findings suggest extensive alternative lipid metabolism in lcFAOD and confirm that lcFAOD accumulate neutral lipid species. In addition, we present two disease-specific candidate biomarkers for VLCADD and LCHADD, that may have significant relevance for disease diagnosis, prognosis, and monitoring.


Assuntos
Cardiomiopatias , Síndrome Congênita de Insuficiência da Medula Óssea , Erros Inatos do Metabolismo Lipídico , Lipidômica , Doenças Mitocondriais , Miopatias Mitocondriais , Proteína Mitocondrial Trifuncional/deficiência , Doenças Musculares , Doenças do Sistema Nervoso , Rabdomiólise , Humanos , Doenças Mitocondriais/diagnóstico , Carnitina , Cisteamina , Lipídeos
3.
Syst Biol Reprod Med ; 70(1): 38-51, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38323618

RESUMO

Mitochondrial diseases are distinct types of metabolic and/or neurologic abnormalities that occur as a consequence of dysfunction in oxidative phosphorylation, affecting several systems in the body. There is no effective treatment modality for mitochondrial disorders so far, emphasizing the clinical significance of preventing the inheritance of these disorders. Various reproductive options are available to reduce the probability of inheriting mitochondrial disorders, including in vitro fertilization (IVF) using donated oocytes, preimplantation genetic testing (PGT), and prenatal diagnosis (PND), among which PGT not only makes it possible for families to have genetically-owned children but also PGT has the advantage that couples do not have to decide to terminate the pregnancy if a mutation is detected in the fetus. PGT for mitochondrial diseases originating from nuclear DNA includes analyzing the nuclear genome for the presence or absence of corresponding mutations. However, PGT for mitochondrial disorders arising from mutations in mitochondrial DNA (mtDNA) is more intricate, due to the specific characteristics of mtDNA such as multicopy nature, heteroplasmy phenomenon, and exclusive maternal inheritance. Therefore, the present review aims to discuss the utility and challenges of PGT as a preventive approach to inherited mitochondrial diseases caused by mtDNA mutations.


Assuntos
Doenças Mitocondriais , Diagnóstico Pré-Implantação , Gravidez , Feminino , Criança , Humanos , DNA Mitocondrial/genética , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Doenças Mitocondriais/prevenção & controle , Testes Genéticos , Mitocôndrias , Fertilização In Vitro
4.
Neurotherapeutics ; 21(1): e00304, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38241155

RESUMO

This paper provides an overview of the different types of mitochondrial myopathies (MM), associated phenotypes, genotypes as well as a practical clinical approach towards disease diagnosis, surveillance, and management. nDNA-related MM are more common in pediatric-onset disease whilst mtDNA-related MMs are more frequent in adults. Genotype-phenotype correlation in MM is challenging due to clinical and genetic heterogeneity. The multisystemic nature of many MMs adds to the diagnostic challenge. Diagnostic approaches utilizing genetic sequencing with next generation sequencing approaches such as gene panel, exome and genome sequencing are available. This aids molecular diagnosis, heteroplasmy detection in MM patients and furthers knowledge of known mitochondrial genes. Precise disease diagnosis can end the diagnostic odyssey for patients, avoid unnecessary testing, provide prognosis, facilitate anticipatory management, and enable access to available therapies or clinical trials. Adjunctive tests such as functional and exercise testing could aid surveillance of MM patients. Management requires a multi-disciplinary approach, systemic screening for comorbidities, cofactor supplementation, avoidance of substances that inhibit the respiratory chain and exercise training. This update of the current understanding on MMs provides practical perspectives on current diagnostic and management approaches for this complex group of disorders.


Assuntos
Doenças Mitocondriais , Miopatias Mitocondriais , Humanos , Criança , Miopatias Mitocondriais/diagnóstico , Miopatias Mitocondriais/genética , Miopatias Mitocondriais/terapia , Mitocôndrias , Sequenciamento de Nucleotídeos em Larga Escala , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Doenças Mitocondriais/terapia
5.
Hepatol Commun ; 8(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38180987

RESUMO

BACKGROUND: Mitochondrial hepatopathies (MHs) are primary mitochondrial genetic disorders that can present as childhood liver disease. No recognized biomarkers discriminate MH from other childhood liver diseases. The protein biomarkers growth differentiation factor 15 (GDF15) and fibroblast growth factor 21 (FGF21) differentiate mitochondrial myopathies from other myopathies. We evaluated these biomarkers to determine if they discriminate MH from other liver diseases in children. METHODS: Serum biomarkers were measured in 36 children with MH (17 had a genetic diagnosis); 38 each with biliary atresia, α1-antitrypsin deficiency, and Alagille syndrome; 20 with NASH; and 186 controls. RESULTS: GDF15 levels compared to controls were mildly elevated in patients with α1-antitrypsin deficiency, Alagille syndrome, and biliary atresia-young subgroup, but markedly elevated in MH (p<0.001). FGF21 levels were mildly elevated in NASH and markedly elevated in MH (p<0.001). Both biomarkers were higher in patients with MH with a known genetic cause but were similar in acute and chronic presentations. Both markers had a strong performance to identify MH with a molecular diagnosis with the AUC for GDF15 0.93±0.04 and for FGF21 0.90±0.06. Simultaneous elevation of both markers >98th percentile of controls identified genetically confirmed MH with a sensitivity of 88% and specificity of 96%. In MH, independent predictors of survival without requiring liver transplantation were international normalized ratio and either GDF15 or FGF21 levels, with levels <2000 ng/L predicting survival without liver transplantation (p<0.01). CONCLUSIONS: GDF15 and FGF21 are significantly higher in children with MH compared to other childhood liver diseases and controls and, when combined, were predictive of MH and had prognostic implications.


Assuntos
Síndrome de Alagille , Atresia Biliar , Fator 15 de Diferenciação de Crescimento , Hepatopatia Gordurosa não Alcoólica , Criança , Humanos , Síndrome de Alagille/diagnóstico , Atresia Biliar/diagnóstico , Biomarcadores , Fator 15 de Diferenciação de Crescimento/sangue , Fator 15 de Diferenciação de Crescimento/química , Doenças Mitocondriais/diagnóstico
6.
Neurotherapeutics ; 21(1): e00311, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38266483

RESUMO

Mitochondrial disorders are a group of rare and heterogeneous genetic diseases characterized by dysfunctional mitochondria leading to deficient adenosine triphosphate synthesis and chronic energy deficit in patients. The majority of these patients exhibit a wide range of phenotypic manifestations targeting several organ systems, making their clinical diagnosis and management challenging. Bridging translational to clinical research is crucial for improving the early diagnosis and prognosis of these intractable mitochondrial disorders and for discovering novel therapeutic drug candidates and modalities. This review provides the current state of clinical testing in mitochondrial disorders, discusses the challenges and opportunities for converting basic discoveries into clinical settings, explores the most suited patient-centric approaches to harness the extraordinary heterogeneity among patients affected by the same primary mitochondrial disorder, and describes the current outlook of clinical trials.


Assuntos
Mitocôndrias , Doenças Mitocondriais , Humanos , Mitocôndrias/genética , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Doenças Mitocondriais/terapia , Medicina de Precisão
7.
Neurotherapeutics ; 21(1): e00325, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38295557

RESUMO

Mitochondrial diseases encompass a heterogeneous group of disorders with a wide range of clinical manifestations, most classically resulting in neurological, muscular, and metabolic abnormalities, but having the potential to affect any organ system. Over the years, substantial progress has been made in identifying and characterizing various biomarkers associated with mitochondrial diseases. This review summarizes the current knowledge of mitochondrial biomarkers based on a literature review and discusses the evidence behind their use in clinical practice. A total of 13 biomarkers were thoroughly reviewed including lactate, pyruvate, lactate:pyruvate ratio, creatine kinase, creatine, amino acid profiles, glutathione, malondialdehyde, GDF-15, FGF-21, gelsolin, neurofilament light-chain, and circulating cell-free mtDNA. Most biomarkers had mixed findings depending on the study, especially when considering their utility for specific mitochondrial diseases versus mitochondrial conditions in general. However, in large biomarker comparison studies, GDF-15 followed by FGF-21, seem to have the greatest value though they are still not perfect. As such, additional studies are needed, especially in light of newer biomarkers that have not yet been thoroughly investigated. Understanding the landscape of biomarkers in mitochondrial diseases is crucial for advancing early detection, improving patient management, and developing targeted therapies.


Assuntos
Fator 15 de Diferenciação de Crescimento , Doenças Mitocondriais , Humanos , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Biomarcadores , Ácido Pirúvico , Ácido Láctico , DNA Mitocondrial
8.
Curr Protoc ; 4(1): e955, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38284225

RESUMO

The international Mitochondrial Disease Sequence Data Resource Consortium (MSeqDR) Quick-Mitome (QM) is a web-based platform enabling automated variant interpretation of whole-exome sequencing (WES) datasets for the genetic diagnosis of primary mitochondrial diseases (PMD). Designed specifically to address the unique dual genome nature of PMD etiologies, QM includes features for both nuclear and mitochondrial DNA (mtDNA) genome analysis. QM requires VCF variant lists, HPO ID clinical phenotypes, and pedigree files for multiple-sample VCF inputs. QM maps phenotypes to HPO terms before analysis. QM analysis requires 2 to 20 min for 100,000 variants on an 8-vCPU AWS server using Exomiser's "PASS_ONLY" mode for nuclear variants. QM ranks variants based on allele frequency, phenotype-gene association, functional impact, and inheritance mode. Variants are further annotated with multiple data sources such as OMIM, ClinVar, dbNSFP, gnoMAD, MITOMAP, and MSeqDR. In addition to standard Exomiser results, QM generates an Analysis Report and QM Integrated Report with add-on mtDNA-specific analyses, including haplogroup prediction with Phy-Mer, heteroplasmy calculation, and mvTool annotations. We developed the Mitochondrial Disease Variant (MDV) classifier using XGBoost to predict variant pathogenicity for PMD. The MDV classifier was trained on >120 features and performance benchmarking showed that it correctly classified >98% of nuclear gene variants as being pathogenic or benign, and predicted PMD-causing variants with 94% precision. The MSeqDR QM server is an open-access resource for phenotype-driven dual-genome analyses for PMD diagnosis by the global mitochondrial disease community. It is publicly available for non-commercial, non-clinical research use at https://mseqdr.org/quickmitome.php. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Standardizing clinical phenotypes into human phenotype ontology (HPO) terms as the phenotype input for Quick-Mitome (QM) Basic Protocol 2: Prepare the pedigree input for multiple-sample VCF Basic Protocol 3: Quick-Mitome (QM) analysis Basic Protocol 4: Reviewing and understanding the QM Integrated Report and Analysis Report.


Assuntos
Doenças Mitocondriais , Humanos , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Fenótipo , DNA Mitocondrial/genética , Mitocôndrias , Aprendizado de Máquina
9.
Eur J Neurol ; 31(5): e16216, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38247216

RESUMO

BACKGROUND AND PURPOSE: Identifying vestibular causes of dizziness and unsteadiness in multi-sensory neurological disease can be challenging, with problems typically attributed to central or peripheral nerve involvement. Acknowledging vestibular dysfunction as part of the presentation provides an opportunity to access targeted vestibular rehabilitation, for which extensive evidence exists. A diagnostic framework was developed and validated to detect vestibular dysfunction, benign paroxysmal positional vertigo or vestibular migraine. The specificity and sensitivity of the diagnostic framework was tested in patients with primary mitochondrial disease. METHODS: Adults with a confirmed diagnosis of primary mitochondrial disease were consented, between September 2020 and February 2022. Participants with and without dizziness or unsteadiness underwent remote physiotherapy assessment and had in-person detailed neuro-otological assessment. The six framework question responses were compared against objective neuro-otological assessment or medical notes. The output was binary, with sensitivity and specificity calculated. RESULTS: Seventy-four adults completed the study: age range 20-81 years (mean 48 years, ±SD 15.05 years); ratio 2:1 female to male. The framework identified a vestibular diagnosis in 35 participants, with seven having two diagnoses. The framework was able to identify vestibular diagnoses in adults with primary mitochondrial disease, with a moderate (40-59) to very high (90-100) sensitivity and positive predictive value, and moderate to high (60-74) to very high (90-100) specificity and negative predictive value. CONCLUSIONS: Overall, the clinical framework identified common vestibular diagnoses with a moderate to very high specificity and sensitivity. This presents an opportunity for patients to access effective treatment in a timely manner, to reduce falls and improve quality of life.


Assuntos
Transtornos de Enxaqueca , Doenças Mitocondriais , Doenças Vestibulares , Adulto , Humanos , Masculino , Feminino , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Tontura/diagnóstico , Tontura/etiologia , Qualidade de Vida , Vertigem/diagnóstico , Vertigem/complicações , Transtornos de Enxaqueca/diagnóstico , Transtornos de Enxaqueca/complicações , Doenças Mitocondriais/complicações , Doenças Mitocondriais/diagnóstico , Doenças Vestibulares/diagnóstico , Doenças Vestibulares/complicações , Vertigem Posicional Paroxística Benigna/complicações
10.
Curr Opin Endocrinol Diabetes Obes ; 31(1): 34-42, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38047549

RESUMO

PURPOSE OF REVIEW: Primary mitochondrial diseases are one of the most prevalent groups of multisystem genetic disorders. Endocrinopathies associated with mitochondrial diseases may have clinical features that are distinct from the more common forms. We provide an overview of mitochondrial disorder genetics and phenotypes, focusing on recent studies regarding identification and treatment of associated endocrinopathies. RECENT FINDINGS: Known endocrine phenotypes of mitochondrial disorders continue to expand, and now include growth hormone deficiency, hypogonadism, precocious puberty, hypoparathyroidism, hypo- and hyperthyroidism, diabetes, and adrenal insufficiency. Recent studies suggest several genotype-phenotype correlations, including those related to nuclear variants. Diagnosis is important, as special considerations should be made in the management of endocrinopathies in mitochondrial patients. Finally, new mitochondrial replacement strategies may soon be available for women interested in preventing mitochondrial disease transmission to offspring. SUMMARY: Patients with multiple endocrinopathies or atypical endocrinopathies should be evaluated for primary mitochondrial disease, as a diagnosis may impact management of these individuals.


Assuntos
Insuficiência Adrenal , Diabetes Mellitus , Doenças do Sistema Endócrino , Hipertireoidismo , Doenças Mitocondriais , Puberdade Precoce , Humanos , Feminino , Doenças do Sistema Endócrino/diagnóstico , Doenças do Sistema Endócrino/genética , Doenças do Sistema Endócrino/complicações , Diabetes Mellitus/genética , Puberdade Precoce/complicações , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Doenças Mitocondriais/complicações , Hipertireoidismo/complicações , Insuficiência Adrenal/genética
11.
Ear Hear ; 45(2): 517-521, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37930162

RESUMO

OBJECTIVES: Sensorineural hearing loss (SNHL) occurs commonly as part of mitochondriopathies and varies in severity and onset. In this study, we characterized hearing with specific consideration for hearing loss as a potential early indicator of mitochondrial disease (MD). We hypothesize that genetic testing at the earliest detection of SNHL may lead to an earlier MD diagnosis. DESIGN: We reviewed the clinical and audiometric data of 49 patients undergoing genetic testing for MD. RESULTS: One-third of individuals with molecularly confirmed MD presented with SNHL. On average, patients had hearing loss at least 10 years before genetic testing. The collective audiometric profile includes mild to moderate SNHL at lower frequencies and moderate SNHL at 2 kHz and higher frequencies. CONCLUSIONS: This study suggests that screening for SNHL could be an early indicator of MD. We propose that the audiometric profile for those with a MD diagnosis may have clinical triage utility.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Doenças Mitocondriais , Humanos , Adulto Jovem , Audiometria , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/genética , Testes Auditivos , Doenças Mitocondriais/complicações , Doenças Mitocondriais/diagnóstico
12.
Indian J Pediatr ; 91(2): 184-187, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36773198

RESUMO

Progressive encephalopathy with brain edema and/or leukoencephalopathy type 1 (PEBEL1) is a nuclear mitochondrial disorder involving the NAD(P)HX repair mechanism due to a NAXE variation. PEBEL1 is characterized by rapid neurologic deterioration culminating in death following high-grade fever during infancy. Currently, 23 patients from 14 families are described in the literature, with only three survivors. The authors report two living children from unrelated families with PEBEL1. Both children presented in infancy with ptosis, squint, and ataxia with no skin manifestations. Whole-exome sequencing revealed previously reported c.804_807delInsA (p.Lys270del) variation in exon 6 of NAXE. This is the first Indian report of PEBEL1.


Assuntos
Leucoencefalopatias , Doenças Mitocondriais , Criança , Humanos , Mutação , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Ataxia
13.
Pediatr Nephrol ; 39(2): 447-450, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37682370

RESUMO

BACKGROUND: Anemia exhibits complex causation mechanisms and genetic heterogeneity. Some cases result in poor outcomes with multisystemic dysfunction, including renal tubulopathy. Early diagnosis is crucial to improve management. CASE-DIAGNOSIS/TREATMENT: A 21-month-old female patient was admitted with severe anemia. Persistent neutropenia and dysplastic signs suggested myelodysplastic syndrome, but targeted gene panel results were negative. After multiple transfusions, spontaneous hematologic recovery was observed. At 4 years old, she presented failure to thrive, renal Fanconi syndrome, and severe metabolic acidosis. Differential diagnosis included Pearson syndrome (PS), a life-threatening condition associated with mitochondrial DNA (mtDNA), featuring anemia and pancreatic insufficiency. Further analysis revealed a ~ 7.5 kb mtDNA deletion. Until the age of 5, supportive care has been provided, without pancreatic insufficiency. CONCLUSIONS: This PS case highlights the importance of genetic testing, even in the absence of typical features. Understanding the nature of mitochondrial disorders enables treatment tailoring and counseling about the prognosis.


Assuntos
Anemia , Insuficiência Pancreática Exócrina , Doenças Mitocondriais , Síndromes Mielodisplásicas , Lactente , Humanos , Feminino , Pré-Escolar , Doenças Mitocondriais/complicações , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , DNA Mitocondrial/genética , Anemia/diagnóstico , Síndromes Mielodisplásicas/complicações , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/genética
14.
J Neurol ; 271(2): 835-840, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37831128

RESUMO

BACKGROUND AND PURPOSE: Primary mitochondrial diseases (PMDs) are rare diseases for which diagnosis is challenging, and management and training programs are not well defined in Europe. To capture and assess care needs, five different European Reference Networks have conducted an exploratory survey. METHODS: The survey covering multiple topics relating to PMDs was sent to all ERNs healthcare providers (HCPs) in Europe. RESULTS: We have collected answers from 220 members based in 24/27 European member states and seven non-European member states. Even though most of the responders are aware of neurogenetic diseases, difficulties arise in the ability to deliver comprehensive genetic testing. While single gene analysis is widely available in Europe, whole exome and genome sequencing are not easily accessible, with considerable variation between countries and average waiting time for results frequently above 6 months. Only 12.7% of responders were happy with the ICD-10 codes for classifying patients with PMDs discharged from the hospital, and more than 70% of them consider that PMDs deserve specific ICD codes to improve clinical management, including tailored healthcare, and for reimbursement reasons. Finally, 90% of responders declared that there is a need for further education and training in these diseases. CONCLUSIONS: This survey provides information on the current difficulties in the care of PMDs in Europe. We believe that the results of this survey are important to help rare disease stakeholders in European countries identify key care and research priorities.


Assuntos
Atenção à Saúde , Doenças Mitocondriais , Humanos , Europa (Continente) , Inquéritos e Questionários , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Doenças Mitocondriais/terapia
15.
J Neuromuscul Dis ; 11(1): 179-189, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38108361

RESUMO

BACKGROUND: The m.3243A>G variant is the commonest mitochondrial (mt) DNA pathogenic variant and a frequent cause of mitochondrial disease. Individuals present with a variety of clinical manifestations from diabetes to neurological events resembling strokes. Due to this, patients are commonly cared for by a multidisciplinary team. OBJECTIVES: This project aimed to identify patients with confirmed mt.3243A>G-related mitochondrial disease attending the Muscle Clinic at Queen Elizabeth University Hospital in Glasgow. We explored potential correlates between clinical phenotypes and mtDNA heteroplasmy levels, HbA1c levels, body mass index, and specific clinical manifestations. We investigated if there were discrepancies between non-neurological speciality labelling in clinical records and individuals' phenotypes. METHODS: Data were gathered from the West of Scotland electronic records. Phenotypes were ascertained by a clinician with expertise in mitochondrial disorders. Statistical analyses were applied to study relationships between tissue heteroplasmy, HbA1c and clinical phenotypes including body mass index (BMI). RESULTS: Forty-six individuals were identified from 31 unrelated pedigrees. Maternally inherited diabetes and deafness was the prominent syndromic phenotype (48%). A significant association was found between overall number of symptoms and bowel dysmotility (p < 0.01). HbA1c was investigated as a predictor of severity with potential association seen. Although used widely as a prognosticator, neither corrected blood nor urine mtDNA heteroplasmy levels were associated with increased number of symptoms. In 74.1% of records, syndromic phenotypes were incorrectly used by non-neurological specialities. CONCLUSIONS: This m.3243 A > G patient cohort present with marked clinical heterogeneity. Urine and blood heteroplasmy levels are not reliable predictors of disease severity. HbA1c may be a novel predictor of disease severity with further research required to investigate this association. We infer that prognosis may be worse in patients with low BMIs and in those with bowel dysmotility. These results underscore a multidisciplinary approach and highlight a problem with inaccurate use of the existing nomenclature.


Assuntos
Doenças Mitocondriais , Humanos , Hemoglobinas Glicadas , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , DNA Mitocondrial/genética , Fenótipo , Gravidade do Paciente
16.
Int J Mol Sci ; 24(23)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38069070

RESUMO

Primary mitochondrial diseases (PMDs) are complex group of metabolic disorders caused by genetically determined impairment of the mitochondrial oxidative phosphorylation (OXPHOS). The unique features of mitochondrial genetics and the pivotal role of mitochondria in cell biology explain the phenotypical heterogeneity of primary mitochondrial diseases and the resulting diagnostic challenges that follow. Some peculiar features ("red flags") may indicate a primary mitochondrial disease, helping the physician to orient in this diagnostic maze. In this narrative review, we aimed to outline the features of the most common mitochondrial red flags offering a general overview on the topic that could help physicians to untangle mitochondrial medicine complexity.


Assuntos
Medicina , Doenças Mitocondriais , Humanos , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Fosforilação Oxidativa
17.
Genes (Basel) ; 14(12)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38136976

RESUMO

Mitochondrial disorders are characterized by a huge clinical, biochemical, and genetic heterogeneity, which poses significant diagnostic challenges. Several studies report that more than 50% of patients with suspected mitochondrial disease could have a non-mitochondrial disorder. Thus, only the identification of the causative pathogenic variant can confirm the diagnosis. Herein, we describe the diagnostic journey of a family suspected of having a mitochondrial disorder who were referred to our Genetics Department. The proband presented with the association of cerebellar ataxia, COX-negative fibers on muscle histology, and mtDNA deletions. Whole exome sequencing (WES), supplemented by a high-resolution array, comparative genomic hybridization (array-CGH), allowed us to identify two pathogenic variants in the non-mitochondrial SYNE1 gene. The proband and her affected sister were found to be compound heterozygous for a known nonsense variant (c.13258C>T, p.(Arg4420Ter)), and a large intragenic deletion that was predicted to result in a loss of function. To our knowledge, this is the first report of a large intragenic deletion of SYNE1 in patients with cerebellar ataxia (ARCA1). This report highlights the interest in a pangenomic approach to identify the genetic basis in heterogeneous neuromuscular patients with the possible cause of mitochondrial disease. Moreover, even rare copy number variations should be considered in patients with a phenotype suggestive of SYNE1 deficiency.


Assuntos
Ataxia Cerebelar , Doenças Mitocondriais , Humanos , Feminino , Ataxia Cerebelar/diagnóstico , Ataxia Cerebelar/genética , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA , Proteínas do Citoesqueleto/genética , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Proteínas do Tecido Nervoso/genética
18.
Epilepsy Behav ; 149: 109498, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37948995

RESUMO

Coenzyme Q10 (CoQ10) is one of the essential substances for mitochondrial energy synthesis and extra-mitochondrial vital function. Primary CoQ10 deficiency is a rare disease resulting from interruption of CoQ10 biosynthetic pathway and biallelic COQ4 variants are one of the genetic etiologies recognized in this hereditary disorder. The clinical heterogenicity is broad with wide onset age from prenatal period to adulthood. The typical manifestations include early pharmacoresistant seizure, severe cognition and/or developmental delay, dystonia, ataxia, and spasticity. Patients may also have multisystemic involvements such as cardiomyopathy, lactic acidosis or gastro-esophageal regurgitation disease. Oral CoQ10 supplement is the major therapeutic medication currently. Among those patients, c.370G > A variant is the most common pathogenic variant detected, especially in Asian population. This phenomenon also suggests that this specific allele may be the founder variants in Asia. In this article, we report two siblings with infantile onset seizures, developmental delay, cardiomyopathy, and diffuse brain atrophy. Genetic analysis of both two cases revealed homozygous COQ4 c.370G > A (p.Gly124Ser) variants. We also review the clinical manifestations of primary CoQ10 deficiency patients and possible treatment categories, which are still under survey. As oral CoQ10 supplement may improve or stabilize disease severity, early precise diagnosis of primary CoQ10 deficiency and early treatment are the most important issues. This review article helps to further understand clinical spectrum and treatment categories of primary CoQ10 deficiency with COQ4 variant.


Assuntos
Cardiomiopatias , Epilepsia , Doenças Mitocondriais , Feminino , Humanos , Gravidez , Ataxia/tratamento farmacológico , Ataxia/genética , Epilepsia/diagnóstico , Epilepsia/tratamento farmacológico , Epilepsia/genética , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Debilidade Muscular/genética , Debilidade Muscular/metabolismo , Debilidade Muscular/patologia , Mutação/genética , Ubiquinona/deficiência , Ubiquinona/metabolismo
19.
Schmerz ; 37(6): 473-482, 2023 Dec.
Artigo em Alemão | MEDLINE | ID: mdl-37921887

RESUMO

Mitochondrial diseases are complex metabolic disorders caused by genetic mutations and lead to impaired energy production in the mitochondria of cells. The clinical spectrum ranges from severe multiorgan involvement in early childhood to mild monosymptomatic courses in adulthood. The brain, heart, and skeletal muscles are particularly affected due to their high energy demands. Headaches in general and migraine in particular, occur disproportionately more frequently in patients with mitochondrial diseases. In recent years similarities in the pathomechanism of mitochondrial diseases and migraine have been investigated in numerous biochemical, genetic, and therapeutic studies. The results suggest a dysfunctional energy metabolism with demonstrable mitochondrial damage as a central aspect in the pathogenesis of migraine. These findings are valuable for a better understanding of primary headache disorders and mitochondrial diseases as well as for the optimization of diagnostic and treatment procedures and should be applied in the clinical practice.


Assuntos
Transtornos de Enxaqueca , Doenças Mitocondriais , Pré-Escolar , Humanos , Transtornos de Enxaqueca/diagnóstico , Transtornos de Enxaqueca/genética , Transtornos de Enxaqueca/terapia , Encéfalo , Cefaleia/etiologia , Cefaleia/terapia , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Doenças Mitocondriais/terapia , Mitocôndrias/metabolismo
20.
Mol Genet Metab ; 140(1-2): 107710, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37903659

RESUMO

Iron­sulfur clusters (FeS) are one of the most primitive and ubiquitous cofactors used by various enzymes in multiple pathways. Biosynthesis of FeS is a complex multi-step process that is tightly regulated and requires multiple machineries. IBA57, along with ISCA1 and ISCA2, play a role in maturation of [4Fe-4S] clusters which are required for multiple mitochondrial enzymes including mitochondrial Complex I, Complex II, lipoic acid synthase, and aconitase. Pathogenic variants in IBA57 have been associated with multiple mitochondrial dysfunctions syndrome 3 (MMDS3) characterized by infantile to early childhood-onset psychomotor regression, optic atrophy and nonspecific dysmorphism. Here we report a female proband who had prenatal involvement including IUGR and microcephaly and developed subacute psychomotor regression at the age of 5 weeks in the setting of preceding viral infection. Brain imaging revealed cortical malformation with polymicrogyria and abnormal signal alteration in brainstem and spinal cord. Biochemical analysis revealed increased plasma glycine and hyperexcretion of multiple organic acids in urine, raising the concern for lipoic acid biosynthesis defects and mitochondrial FeS assembly defects. Molecular analysis subsequently detected compound heterozygous variants in IBA57, confirming the diagnosis of MMDS3. Although the number of MMDS3 patients are limited, certain degree of genotype-phenotype correlation has been observed. Unusual brain imaging in the proband highlights the need to include mitochondrial disorders as differential diagnoses of structural brain abnormalities. Lastly, in addition to previously known biomarkers including high blood lactate and plasma glycine levels, the increase of 2-hydroxyadipic and 2-ketoadipic acids in urine organic acid analysis, in the appropriate clinical context, should prompt an evaluation for the lipoic acid biosynthesis defects and mitochondrial FeS assembly defects.


Assuntos
Proteínas Ferro-Enxofre , Doenças Mitocondriais , Ácido Tióctico , Humanos , Pré-Escolar , Feminino , Lactente , Lisina/metabolismo , Triptofano/metabolismo , Proteínas Ferro-Enxofre/genética , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Biomarcadores/metabolismo , Glicina/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas de Transporte/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...